Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Oct 2023]
Title:A Metacognitive Approach to Out-of-Distribution Detection for Segmentation
View PDFAbstract:Despite outstanding semantic scene segmentation in closed-worlds, deep neural networks segment novel instances poorly, which is required for autonomous agents acting in an open world. To improve out-of-distribution (OOD) detection for segmentation, we introduce a metacognitive approach in the form of a lightweight module that leverages entropy measures, segmentation predictions, and spatial context to characterize the segmentation model's uncertainty and detect pixel-wise OOD data in real-time. Additionally, our approach incorporates a novel method of generating synthetic OOD data in context with in-distribution data, which we use to fine-tune existing segmentation models with maximum entropy training. This further improves the metacognitive module's performance without requiring access to OOD data while enabling compatibility with established pre-trained models. Our resulting approach can reliably detect OOD instances in a scene, as shown by state-of-the-art performance on OOD detection for semantic segmentation benchmarks.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.