Computer Science > Machine Learning
[Submitted on 8 Nov 2023 (v1), last revised 26 Dec 2023 (this version, v2)]
Title:Auto deep learning for bioacoustic signals
View PDF HTML (experimental)Abstract:This study investigates the potential of automated deep learning to enhance the accuracy and efficiency of multi-class classification of bird vocalizations, compared against traditional manually-designed deep learning models. Using the Western Mediterranean Wetland Birds dataset, we investigated the use of AutoKeras, an automated machine learning framework, to automate neural architecture search and hyperparameter tuning. Comparative analysis validates our hypothesis that the AutoKeras-derived model consistently outperforms traditional models like MobileNet, ResNet50 and VGG16. Our approach and findings underscore the transformative potential of automated deep learning for advancing bioacoustics research and models. In fact, the automated techniques eliminate the need for manual feature engineering and model design while improving performance. This study illuminates best practices in sampling, evaluation and reporting to enhance reproducibility in this nascent field. All the code used is available at https: //github.com/giuliotosato/AutoKeras-bioacustic
Keywords: AutoKeras; automated deep learning; audio classification; Wetlands Bird dataset; comparative analysis; bioacoustics; validation dataset; multi-class classification; spectrograms.
Submission history
From: Giulio Tosato [view email][v1] Wed, 8 Nov 2023 07:22:39 UTC (1,968 KB)
[v2] Tue, 26 Dec 2023 13:49:45 UTC (1,963 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.