Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Nov 2023 (v1), last revised 1 Dec 2024 (this version, v2)]
Title:SaFL: Sybil-aware Federated Learning with Application to Face Recognition
View PDF HTML (experimental)Abstract:Federated Learning (FL) is a machine learning paradigm to conduct collaborative learning among clients on a joint model. The primary goal is to share clients' local training parameters with an integrating server while preserving their privacy. This method permits to exploit the potential of massive mobile users' data for the benefit of machine learning models' performance while keeping sensitive data on local devices. On the downside, FL raises security and privacy concerns that have just started to be studied. To address some of the key threats in FL, researchers have proposed to use secure aggregation methods (e.g. homomorphic encryption, secure multiparty computation, etc.). These solutions improve some security and privacy metrics, but at the same time bring about other serious threats such as poisoning attacks, backdoor attacks, and free running attacks. This paper proposes a new defense method against poisoning attacks in FL called SaFL (Sybil-aware Federated Learning) that minimizes the effect of sybils with a novel time-variant aggregation scheme.
Submission history
From: Mahdi Ghafourian [view email][v1] Tue, 7 Nov 2023 21:06:06 UTC (1,019 KB)
[v2] Sun, 1 Dec 2024 20:10:57 UTC (1,062 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.