Computer Science > Machine Learning
[Submitted on 2 Nov 2023]
Title:Gaussian Mixture Solvers for Diffusion Models
View PDFAbstract:Recently, diffusion models have achieved great success in generative tasks. Sampling from diffusion models is equivalent to solving the reverse diffusion stochastic differential equations (SDEs) or the corresponding probability flow ordinary differential equations (ODEs). In comparison, SDE-based solvers can generate samples of higher quality and are suited for image translation tasks like stroke-based synthesis. During inference, however, existing SDE-based solvers are severely constrained by the efficiency-effectiveness dilemma. Our investigation suggests that this is because the Gaussian assumption in the reverse transition kernel is frequently violated (even in the case of simple mixture data) given a limited number of discretization steps. To overcome this limitation, we introduce a novel class of SDE-based solvers called \emph{Gaussian Mixture Solvers (GMS)} for diffusion models. Our solver estimates the first three-order moments and optimizes the parameters of a Gaussian mixture transition kernel using generalized methods of moments in each step during sampling. Empirically, our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis in various diffusion models, which validates the motivation and effectiveness of GMS. Our code is available at this https URL.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.