Computer Science > Sound
[Submitted on 1 Nov 2023 (v1), last revised 2 Nov 2023 (this version, v2)]
Title:Deep Neural Networks for Automatic Speaker Recognition Do Not Learn Supra-Segmental Temporal Features
View PDFAbstract:While deep neural networks have shown impressive results in automatic speaker recognition and related tasks, it is dissatisfactory how little is understood about what exactly is responsible for these results. Part of the success has been attributed in prior work to their capability to model supra-segmental temporal information (SST), i.e., learn rhythmic-prosodic characteristics of speech in addition to spectral features. In this paper, we (i) present and apply a novel test to quantify to what extent the performance of state-of-the-art neural networks for speaker recognition can be explained by modeling SST; and (ii) present several means to force respective nets to focus more on SST and evaluate their merits. We find that a variety of CNN- and RNN-based neural network architectures for speaker recognition do not model SST to any sufficient degree, even when forced. The results provide a highly relevant basis for impactful future research into better exploitation of the full speech signal and give insights into the inner workings of such networks, enhancing explainability of deep learning for speech technologies.
Submission history
From: Thilo Stadelmann [view email][v1] Wed, 1 Nov 2023 12:45:31 UTC (5,770 KB)
[v2] Thu, 2 Nov 2023 06:07:14 UTC (5,770 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.