Computer Science > Machine Learning
[Submitted on 30 Oct 2023 (v1), last revised 6 Sep 2024 (this version, v3)]
Title:Re-evaluating Retrosynthesis Algorithms with Syntheseus
View PDF HTML (experimental)Abstract:Automated Synthesis Planning has recently re-emerged as a research area at the intersection of chemistry and machine learning. Despite the appearance of steady progress, we argue that imperfect benchmarks and inconsistent comparisons mask systematic shortcomings of existing techniques, and unnecessarily hamper progress. To remedy this, we present a synthesis planning library with an extensive benchmarking framework, called syntheseus, which promotes best practice by default, enabling consistent meaningful evaluation of single-step models and multi-step planning algorithms. We demonstrate the capabilities of syntheseus by re-evaluating several previous retrosynthesis algorithms, and find that the ranking of state-of-the-art models changes in controlled evaluation experiments. We end with guidance for future works in this area, and call the community to engage in the discussion on how to improve benchmarks for synthesis planning.
Submission history
From: Krzysztof Maziarz [view email][v1] Mon, 30 Oct 2023 17:59:04 UTC (188 KB)
[v2] Mon, 19 Feb 2024 18:50:09 UTC (203 KB)
[v3] Fri, 6 Sep 2024 17:55:53 UTC (300 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.