Computer Science > Machine Learning
[Submitted on 30 Oct 2023]
Title:Operator Learning Enhanced Physics-informed Neural Networks for Solving Partial Differential Equations Characterized by Sharp Solutions
View PDFAbstract:Physics-informed Neural Networks (PINNs) have been shown as a promising approach for solving both forward and inverse problems of partial differential equations (PDEs). Meanwhile, the neural operator approach, including methods such as Deep Operator Network (DeepONet) and Fourier neural operator (FNO), has been introduced and extensively employed in approximating solution of PDEs. Nevertheless, to solve problems consisting of sharp solutions poses a significant challenge when employing these two approaches. To address this issue, we propose in this work a novel framework termed Operator Learning Enhanced Physics-informed Neural Networks (OL-PINN). Initially, we utilize DeepONet to learn the solution operator for a set of smooth problems relevant to the PDEs characterized by sharp solutions. Subsequently, we integrate the pre-trained DeepONet with PINN to resolve the target sharp solution problem. We showcase the efficacy of OL-PINN by successfully addressing various problems, such as the nonlinear diffusion-reaction equation, the Burgers equation and the incompressible Navier-Stokes equation at high Reynolds number. Compared with the vanilla PINN, the proposed method requires only a small number of residual points to achieve a strong generalization capability. Moreover, it substantially enhances accuracy, while also ensuring a robust training process. Furthermore, OL-PINN inherits the advantage of PINN for solving inverse problems. To this end, we apply the OL-PINN approach for solving problems with only partial boundary conditions, which usually cannot be solved by the classical numerical methods, showing its capacity in solving ill-posed problems and consequently more complex inverse problems.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.