High Energy Physics - Theory
[Submitted on 30 Oct 2023]
Title:Machine Learning Regularization for the Minimum Volume Formula of Toric Calabi-Yau 3-folds
View PDFAbstract:We present a collection of explicit formulas for the minimum volume of Sasaki-Einstein 5-manifolds. The cone over these 5-manifolds is a toric Calabi-Yau 3-fold. These toric Calabi-Yau 3-folds are associated with an infinite class of 4d N=1 supersymmetric gauge theories, which are realized as worldvolume theories of D3-branes probing the toric Calabi-Yau 3-folds. Under the AdS/CFT correspondence, the minimum volume of the Sasaki-Einstein base is inversely proportional to the central charge of the corresponding 4d N=1 superconformal field theories. The presented formulas for the minimum volume are in terms of geometric invariants of the toric Calabi-Yau 3-folds. These explicit results are derived by implementing machine learning regularization techniques that advance beyond previous applications of machine learning for determining the minimum volume. Moreover, the use of machine learning regularization allows us to present interpretable and explainable formulas for the minimum volume. Our work confirms that, even for extensive sets of toric Calabi-Yau 3-folds, the proposed formulas approximate the minimum volume with remarkable accuracy.
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.