Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 29 Oct 2023]
Title:Optimizing simultaneous autoscaling for serverless cloud computing
View PDFAbstract:This paper explores resource allocation in serverless cloud computing platforms and proposes an optimization approach for autoscaling systems. Serverless computing relieves users from resource management tasks, enabling focus on application functions. However, dynamic resource allocation and function replication based on changing loads remain crucial. Typically, autoscalers in these platforms utilize threshold-based mechanisms to adjust function replicas independently. We model applications as interconnected graphs of functions, where requests probabilistically traverse the graph, triggering associated function execution. Our objective is to develop a control policy that optimally allocates resources on servers, minimizing failed requests and response time in reaction to load changes. Using a fluid approximation model and Separated Continuous Linear Programming (SCLP), we derive an optimal control policy that determines the number of resources per replica and the required number of replicas over time. We evaluate our approach using a simulation framework built with Python and simpy. Comparing against threshold-based autoscaling, our approach demonstrates significant improvements in average response times and failed requests, ranging from 15% to over 300% in most cases. We also explore the impact of system and workload parameters on performance, providing insights into the behavior of our optimization approach under different conditions. Overall, our study contributes to advancing resource allocation strategies, enhancing efficiency and reliability in serverless cloud computing platforms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.