Computer Science > Machine Learning
[Submitted on 27 Oct 2023]
Title:Bridging Distributionally Robust Learning and Offline RL: An Approach to Mitigate Distribution Shift and Partial Data Coverage
View PDFAbstract:The goal of an offline reinforcement learning (RL) algorithm is to learn optimal polices using historical (offline) data, without access to the environment for online exploration. One of the main challenges in offline RL is the distribution shift which refers to the difference between the state-action visitation distribution of the data generating policy and the learning policy. Many recent works have used the idea of pessimism for developing offline RL algorithms and characterizing their sample complexity under a relatively weak assumption of single policy concentrability. Different from the offline RL literature, the area of distributionally robust learning (DRL) offers a principled framework that uses a minimax formulation to tackle model mismatch between training and testing environments. In this work, we aim to bridge these two areas by showing that the DRL approach can be used to tackle the distributional shift problem in offline RL. In particular, we propose two offline RL algorithms using the DRL framework, for the tabular and linear function approximation settings, and characterize their sample complexity under the single policy concentrability assumption. We also demonstrate the superior performance our proposed algorithm through simulation experiments.
Submission history
From: Kishan Panaganti Badrinath [view email][v1] Fri, 27 Oct 2023 19:19:30 UTC (101 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.