Mathematics > Numerical Analysis
[Submitted on 26 Oct 2023 (v1), last revised 25 Mar 2024 (this version, v2)]
Title:A mixed FEM for a time-fractional Fokker-Planck model
View PDF HTML (experimental)Abstract:We propose and analyze a mixed finite element method for the spatial approximation of a time-fractional Fokker--Planck equation in a convex polyhedral domain, where the given driving force is a function of space. Taking into account the limited smoothing properties of the model, and considering an appropriate splitting of the errors, we employed a sequence of clever energy arguments to show optimal convergence rates with respect to both approximation properties and regularity results. In particular, error bounds for both primary and secondary variables are derived in $L^2$-norm for cases with smooth and nonsmooth initial data. We further investigate a fully implicit time-stepping scheme based on a convolution quadrature in time generated by the backward Euler method. Our main result provides pointwise-in-time optimal $L^2$-error estimates for the primary variable. Numerical examples are then presented to illustrate the theoretical contributions.
Submission history
From: Naveed Ahmed [view email][v1] Thu, 26 Oct 2023 12:35:11 UTC (371 KB)
[v2] Mon, 25 Mar 2024 06:16:42 UTC (371 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.