Computer Science > Machine Learning
[Submitted on 24 Oct 2023]
Title:On the Convergence and Sample Complexity Analysis of Deep Q-Networks with $ε$-Greedy Exploration
View PDFAbstract:This paper provides a theoretical understanding of Deep Q-Network (DQN) with the $\varepsilon$-greedy exploration in deep reinforcement learning. Despite the tremendous empirical achievement of the DQN, its theoretical characterization remains underexplored. First, the exploration strategy is either impractical or ignored in the existing analysis. Second, in contrast to conventional Q-learning algorithms, the DQN employs the target network and experience replay to acquire an unbiased estimation of the mean-square Bellman error (MSBE) utilized in training the Q-network. However, the existing theoretical analysis of DQNs lacks convergence analysis or bypasses the technical challenges by deploying a significantly overparameterized neural network, which is not computationally efficient. This paper provides the first theoretical convergence and sample complexity analysis of the practical setting of DQNs with $\epsilon$-greedy policy. We prove an iterative procedure with decaying $\epsilon$ converges to the optimal Q-value function geometrically. Moreover, a higher level of $\epsilon$ values enlarges the region of convergence but slows down the convergence, while the opposite holds for a lower level of $\epsilon$ values. Experiments justify our established theoretical insights on DQNs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.