Electrical Engineering and Systems Science > Systems and Control
[Submitted on 24 Oct 2023 (v1), last revised 5 Feb 2024 (this version, v2)]
Title:ROM-Based Stochastic Optimization for a Continuous Manufacturing Process
View PDFAbstract:This paper proposes a model-based optimization method for the production of automotive seals in an extrusion process. The high production throughput, coupled with quality constraints and the inherent uncertainty of the process, encourages the search for operating conditions that minimize nonconformities. The main uncertainties arise from the process variability and from the raw material itself. The proposed method, which is based on Bayesian optimization, takes these factors into account and obtains a robust set of process parameters. Due to the high computational cost and complexity of performing detailed simulations, a reduced order model is used to address the optimization. The proposal has been evaluated in a virtual environment, where it has been verified that it is able to minimize the impact of process uncertainties. In particular, it would significantly improve the quality of the product without incurring additional costs, achieving a 50% tighter dimensional tolerance compared to a solution obtained by a deterministic optimization algorithm.
Submission history
From: Edgar Ramirez-Laboreo [view email][v1] Tue, 24 Oct 2023 19:38:36 UTC (1,357 KB)
[v2] Mon, 5 Feb 2024 14:54:20 UTC (2,140 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.