Computer Science > Sound
[Submitted on 24 Oct 2023]
Title:Complex Image Generation SwinTransformer Network for Audio Denoising
View PDFAbstract:Achieving high-performance audio denoising is still a challenging task in real-world applications. Existing time-frequency methods often ignore the quality of generated frequency domain images. This paper converts the audio denoising problem into an image generation task. We first develop a complex image generation SwinTransformer network to capture more information from the complex Fourier domain. We then impose structure similarity and detailed loss functions to generate high-quality images and develop an SDR loss to minimize the difference between denoised and clean audios. Extensive experiments on two benchmark datasets demonstrate that our proposed model is better than state-of-the-art methods.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.