Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 24 Oct 2023]
Title:YOLO-Angio: An Algorithm for Coronary Anatomy Segmentation
View PDFAbstract:Coronary angiography remains the gold standard for diagnosis of coronary artery disease, the most common cause of death worldwide. While this procedure is performed more than 2 million times annually, there remain few methods for fast and accurate automated measurement of disease and localization of coronary anatomy. Here, we present our solution to the Automatic Region-based Coronary Artery Disease diagnostics using X-ray angiography images (ARCADE) challenge held at MICCAI 2023. For the artery segmentation task, our three-stage approach combines preprocessing and feature selection by classical computer vision to enhance vessel contrast, followed by an ensemble model based on YOLOv8 to propose possible vessel candidates by generating a vessel map. A final segmentation is based on a logic-based approach to reconstruct the coronary tree in a graph-based sorting method. Our entry to the ARCADE challenge placed 3rd overall. Using the official metric for evaluation, we achieved an F1 score of 0.422 and 0.4289 on the validation and hold-out sets respectively.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.