Computer Science > Machine Learning
[Submitted on 23 Oct 2023]
Title:Rethinking SIGN Training: Provable Nonconvex Acceleration without First- and Second-Order Gradient Lipschitz
View PDFAbstract:Sign-based stochastic methods have gained attention due to their ability to achieve robust performance despite using only the sign information for parameter updates. However, the current convergence analysis of sign-based methods relies on the strong assumptions of first-order gradient Lipschitz and second-order gradient Lipschitz, which may not hold in practical tasks like deep neural network training that involve high non-smoothness. In this paper, we revisit sign-based methods and analyze their convergence under more realistic assumptions of first- and second-order smoothness. We first establish the convergence of the sign-based method under weak first-order Lipschitz. Motivated by the weak first-order Lipschitz, we propose a relaxed second-order condition that still allows for nonconvex acceleration in sign-based methods. Based on our theoretical results, we gain insights into the computational advantages of the recently developed LION algorithm. In distributed settings, we prove that this nonconvex acceleration persists with linear speedup in the number of nodes, when utilizing fast communication compression gossip protocols. The novelty of our theoretical results lies in that they are derived under much weaker assumptions, thereby expanding the provable applicability of sign-based algorithms to a wider range of problems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.