Computer Science > Cryptography and Security
[Submitted on 18 Oct 2023 (v1), last revised 27 Mar 2024 (this version, v6)]
Title:InferDPT: Privacy-Preserving Inference for Black-box Large Language Model
View PDF HTML (experimental)Abstract:Large language models (LLMs), like ChatGPT, have greatly simplified text generation tasks. However, they have also raised concerns about privacy risks such as data leakage and unauthorized data collection. Existing solutions for privacy-preserving inference face practical challenges related to computation time and communication costs. In this paper, we propose InferDPT, the first practical framework for the privacy-preserving Inference of black-box LLMs, implementing Differential Privacy in Text generation. InferDPT comprises two key modules: the "perturbation module" utilizes the exponential mechanism to generate a perturbed prompt, facilitating privacy-preserving inference with black-box LLMs, and the "extraction module", inspired by knowledge distillation and retrieval-augmented generation, extracts coherent and consistent text from the perturbed generation result, ensuring successful text generation completion. To address privacy concerns related to previous exponential mechanisms' susceptibility to embedding revision attacks, we introduce RANTEXT, a novel differential privacy mechanism integrated into the perturbation module of InferDPT, which introduces the concept of "RANdom adjacency" for TEXT perturbation within the prompt. Experimental results across three datasets demonstrate that the text generation quality of InferDPT is comparable to that of non-private GPT-4, and RANTEXT surpasses existing state-of-the-art mechanisms, namely, SANTEXT+ and CUSTEXT+ in the trade-off between privacy and utility. Even with an privacy parameter epsilon value of 6.0, RANTEXT achieves an average privacy protection rate exceeding 90% against embedding revision attacks, which is 0.58 times higher than that of SANTEXT+ and 3.35 times higher than that of CUSTEXT+.
Submission history
From: Meng Tong [view email][v1] Wed, 18 Oct 2023 18:00:11 UTC (796 KB)
[v2] Sun, 22 Oct 2023 07:34:36 UTC (760 KB)
[v3] Tue, 24 Oct 2023 03:25:14 UTC (760 KB)
[v4] Fri, 8 Dec 2023 05:14:40 UTC (1,261 KB)
[v5] Mon, 11 Dec 2023 09:59:09 UTC (1,261 KB)
[v6] Wed, 27 Mar 2024 09:19:01 UTC (9,684 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.