Computer Science > Information Retrieval
[Submitted on 16 Oct 2023]
Title:If the Sources Could Talk: Evaluating Large Language Models for Research Assistance in History
View PDFAbstract:The recent advent of powerful Large-Language Models (LLM) provides a new conversational form of inquiry into historical memory (or, training data, in this case). We show that by augmenting such LLMs with vector embeddings from highly specialized academic sources, a conversational methodology can be made accessible to historians and other researchers in the Humanities. Concretely, we evaluate and demonstrate how LLMs have the ability of assisting researchers while they examine a customized corpora of different types of documents, including, but not exclusive to: (1). primary sources, (2). secondary sources written by experts, and (3). the combination of these two. Compared to established search interfaces for digital catalogues, such as metadata and full-text search, we evaluate the richer conversational style of LLMs on the performance of two main types of tasks: (1). question-answering, and (2). extraction and organization of data. We demonstrate that LLMs semantic retrieval and reasoning abilities on problem-specific tasks can be applied to large textual archives that have not been part of the its training data. Therefore, LLMs can be augmented with sources relevant to specific research projects, and can be queried privately by researchers.
Submission history
From: Christian Weilbach [view email][v1] Mon, 16 Oct 2023 20:12:06 UTC (449 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.