Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Oct 2023 (v1), last revised 27 Apr 2024 (this version, v2)]
Title:VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools
View PDF HTML (experimental)Abstract:Building models that comprehends videos and responds specific user instructions is a practical and challenging topic, as it requires mastery of both vision understanding and knowledge reasoning. Compared to language and image modalities, training efficiency remains a serious problem as existing studies train models on massive sparse videos paired with brief descriptions. In this paper, we introduce \textbf{VidCoM}, a fast adaptive framework that leverages Large Language Models (LLMs) to reason about videos using lightweight visual tools. Specifically, we reveal that the key to responding to specific instructions is focusing on relevant video events, and utilize two visual tools, structured scene graph generation and descriptive image caption generation, to gather and represent the event information. Thus, a LLM enriched with world knowledge is adopted as the reasoning agent to achieve the responses by performing multiple reasoning steps on specific video events. To address the difficulty of LLMs identifying video events, we further propose an Instruction-oriented Video Events Recognition (InsOVER) algorithm. This algorithm locates the corresponding video events based on an efficient Hungarian matching between decompositions of linguistic instructions and video events, thereby enabling LLMs to interact effectively with extended videos. Extensive experiments on two typical video comprehension tasks show that the proposed tuning-free framework outperforms the pre-trained models including Flamingo-80B, to achieve the state-of-the-art performance. Our source code and system will be publicly available.
Submission history
From: Ji Qi [view email][v1] Mon, 16 Oct 2023 17:05:56 UTC (4,841 KB)
[v2] Sat, 27 Apr 2024 08:41:37 UTC (4,945 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.