Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Oct 2023]
Title:HaarNet: Large-scale Linear-Morphological Hybrid Network for RGB-D Semantic Segmentation
View PDFAbstract:Signals from different modalities each have their own combination algebra which affects their sampling processing. RGB is mostly linear; depth is a geometric signal following the operations of mathematical morphology. If a network obtaining RGB-D input has both kinds of operators available in its layers, it should be able to give effective output with fewer parameters. In this paper, morphological elements in conjunction with more familiar linear modules are used to construct a mixed linear-morphological network called HaarNet. This is the first large-scale linear-morphological hybrid, evaluated on a set of sizeable real-world datasets. In the network, morphological Haar sampling is applied to both feature channels in several layers, which splits extreme values and high-frequency information such that both can be processed to improve both modalities. Moreover, morphologically parameterised ReLU is used, and morphologically-sound up-sampling is applied to obtain a full-resolution output. Experiments show that HaarNet is competitive with a state-of-the-art CNN, implying that morphological networks are a promising research direction for geometry-based learning tasks.
Submission history
From: Rick Groenendijk [view email][v1] Wed, 11 Oct 2023 17:18:15 UTC (7,979 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.