Computer Science > Machine Learning
[Submitted on 10 Oct 2023 (v1), last revised 11 Oct 2023 (this version, v2)]
Title:Ensemble Active Learning by Contextual Bandits for AI Incubation in Manufacturing
View PDFAbstract:It is challenging but important to save annotation efforts in streaming data acquisition to maintain data quality for supervised learning base learners. We propose an ensemble active learning method to actively acquire samples for annotation by contextual bandits, which is will enforce the exploration-exploitation balance and leading to improved AI modeling performance.
Submission history
From: Yingyan Zeng [view email][v1] Tue, 10 Oct 2023 04:44:35 UTC (17,392 KB)
[v2] Wed, 11 Oct 2023 01:00:45 UTC (17,392 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.