Computer Science > Human-Computer Interaction
[Submitted on 9 Oct 2023]
Title:"Mango Mango, How to Let The Lettuce Dry Without A Spinner?'': Exploring User Perceptions of Using An LLM-Based Conversational Assistant Toward Cooking Partner
View PDFAbstract:The rapid advancement of the Large Language Model (LLM) has created numerous potentials for integration with conversational assistants (CAs) assisting people in their daily tasks, particularly due to their extensive flexibility. However, users' real-world experiences interacting with these assistants remain unexplored. In this research, we chose cooking, a complex daily task, as a scenario to investigate people's successful and unsatisfactory experiences while receiving assistance from an LLM-based CA, Mango Mango. We discovered that participants value the system's ability to provide extensive information beyond the recipe, offer customized instructions based on context, and assist them in dynamically planning the task. However, they expect the system to be more adaptive to oral conversation and provide more suggestive responses to keep users actively involved. Recognizing that users began treating our LLM-CA as a personal assistant or even a partner rather than just a recipe-reading tool, we propose several design considerations for future development.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.