Electrical Engineering and Systems Science > Signal Processing
[Submitted on 8 Oct 2023 (v1), last revised 24 Nov 2023 (this version, v3)]
Title:Accurate battery lifetime prediction across diverse aging conditions with deep learning
View PDFAbstract:Accurately predicting the lifetime of battery cells in early cycles holds tremendous value for battery research and development as well as numerous downstream applications. This task is rather challenging because diverse conditions, such as electrode materials, operating conditions, and working environments, collectively determine complex capacity-degradation behaviors. However, current prediction methods are developed and validated under limited aging conditions, resulting in questionable adaptability to varied aging conditions and an inability to fully benefit from historical data collected under different conditions. Here we introduce a universal deep learning approach that is capable of accommodating various aging conditions and facilitating effective learning under low-resource conditions by leveraging data from rich conditions. Our key finding is that incorporating inter-cell feature differences, rather than solely considering single-cell characteristics, significantly increases the accuracy of battery lifetime prediction and its cross-condition robustness. Accordingly, we develop a holistic learning framework accommodating both single-cell and inter-cell modeling. A comprehensive benchmark is built for evaluation, encompassing 401 battery cells utilizing 5 prevalent electrode materials across 168 cycling conditions. We demonstrate remarkable capabilities in learning across diverse aging conditions, exclusively achieving 10% prediction error using the first 100 cycles, and in facilitating low-resource learning, almost halving the error of single-cell modeling in many cases. More broadly, by breaking the learning boundaries among different aging conditions, our approach could significantly accelerate the development and optimization of lithium-ion batteries.
Submission history
From: Han Zhang [view email][v1] Sun, 8 Oct 2023 07:25:27 UTC (3,250 KB)
[v2] Wed, 11 Oct 2023 09:04:01 UTC (3,251 KB)
[v3] Fri, 24 Nov 2023 08:00:48 UTC (4,349 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.