Computer Science > Multiagent Systems
[Submitted on 6 Oct 2023]
Title:Deconstructing Cooperation and Ostracism via Multi-Agent Reinforcement Learning
View PDFAbstract:Cooperation is challenging in biological systems, human societies, and multi-agent systems in general. While a group can benefit when everyone cooperates, it is tempting for each agent to act selfishly instead. Prior human studies show that people can overcome such social dilemmas while choosing interaction partners, i.e., strategic network rewiring. However, little is known about how agents, including humans, can learn about cooperation from strategic rewiring and vice versa. Here, we perform multi-agent reinforcement learning simulations in which two agents play the Prisoner's Dilemma game iteratively. Each agent has two policies: one controls whether to cooperate or defect; the other controls whether to rewire connections with another agent. This setting enables us to disentangle complex causal dynamics between cooperation and network rewiring. We find that network rewiring facilitates mutual cooperation even when one agent always offers cooperation, which is vulnerable to free-riding. We then confirm that the network-rewiring effect is exerted through agents' learning of ostracism, that is, connecting to cooperators and disconnecting from defectors. However, we also find that ostracism alone is not sufficient to make cooperation emerge. Instead, ostracism emerges from the learning of cooperation, and existing cooperation is subsequently reinforced due to the presence of ostracism. Our findings provide insights into the conditions and mechanisms necessary for the emergence of cooperation with network rewiring.
Current browse context:
cs.MA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.