Computer Science > Computation and Language
[Submitted on 6 Oct 2023 (v1), last revised 19 Feb 2024 (this version, v3)]
Title:A Comprehensive Evaluation of Large Language Models on Benchmark Biomedical Text Processing Tasks
View PDF HTML (experimental)Abstract:Recently, Large Language Models (LLM) have demonstrated impressive capability to solve a wide range of tasks. However, despite their success across various tasks, no prior work has investigated their capability in the biomedical domain yet. To this end, this paper aims to evaluate the performance of LLMs on benchmark biomedical tasks. For this purpose, we conduct a comprehensive evaluation of 4 popular LLMs in 6 diverse biomedical tasks across 26 datasets. To the best of our knowledge, this is the first work that conducts an extensive evaluation and comparison of various LLMs in the biomedical domain. Interestingly, we find based on our evaluation that in biomedical datasets that have smaller training sets, zero-shot LLMs even outperform the current state-of-the-art fine-tuned biomedical models. This suggests that pretraining on large text corpora makes LLMs quite specialized even in the biomedical domain. We also find that not a single LLM can outperform other LLMs in all tasks, with the performance of different LLMs may vary depending on the task. While their performance is still quite poor in comparison to the biomedical models that were fine-tuned on large training sets, our findings demonstrate that LLMs have the potential to be a valuable tool for various biomedical tasks that lack large annotated data.
Submission history
From: Md Tahmid Rahman Laskar [view email][v1] Fri, 6 Oct 2023 14:16:28 UTC (949 KB)
[v2] Tue, 10 Oct 2023 03:26:16 UTC (949 KB)
[v3] Mon, 19 Feb 2024 22:58:39 UTC (7,666 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.