Computer Science > Robotics
[Submitted on 6 Oct 2023 (v1), last revised 16 Sep 2024 (this version, v2)]
Title:DRIFT: Deep Reinforcement Learning for Intelligent Floating Platforms Trajectories
View PDF HTML (experimental)Abstract:This investigation introduces a novel deep reinforcement learning-based suite to control floating platforms in both simulated and real-world environments. Floating platforms serve as versatile test-beds to emulate micro-gravity environments on Earth, useful to test autonomous navigation systems for space applications. Our approach addresses the system and environmental uncertainties in controlling such platforms by training policies capable of precise maneuvers amid dynamic and unpredictable conditions. Leveraging Deep Reinforcement Learning (DRL) techniques, our suite achieves robustness, adaptability, and good transferability from simulation to reality. Our deep reinforcement learning framework provides advantages such as fast training times, large-scale testing capabilities, rich visualization options, and ROS bindings for integration with real-world robotic systems. Being open access, our suite serves as a comprehensive platform for practitioners who want to replicate similar research in their own simulated environments and labs.
Submission history
From: Matteo El Hariry [view email][v1] Fri, 6 Oct 2023 14:11:35 UTC (4,918 KB)
[v2] Mon, 16 Sep 2024 09:16:08 UTC (16,262 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.