Computer Science > Robotics
[Submitted on 4 Oct 2023]
Title:Optimal Collaborative Transportation for Under-Capacitated Vehicle Routing Problems using Aerial Drone Swarms
View PDFAbstract:Swarms of aerial drones have recently been considered for last-mile deliveries in urban logistics or automated construction. At the same time, collaborative transportation of payloads by multiple drones is another important area of recent research. However, efficient coordination algorithms for collaborative transportation of many payloads by many drones remain to be considered. In this work, we formulate the collaborative transportation of payloads by a swarm of drones as a novel, under-capacitated generalization of vehicle routing problems (VRP), which may also be of separate interest. In contrast to standard VRP and capacitated VRP, we must additionally consider waiting times for payloads lifted cooperatively by multiple drones, and the corresponding coordination. Algorithmically, we provide a solution encoding that avoids deadlocks and formulate an appropriate alternating minimization scheme to solve the problem. On the hardware side, we integrate our algorithms with collision avoidance and drone controllers. The approach and the impact of the system integration are successfully verified empirically, both on a swarm of real nano-quadcopters and for large swarms in simulation. Overall, we provide a framework for collaborative transportation with aerial drone swarms, that uses only as many drones as necessary for the transportation of any single payload.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.