Computer Science > Cryptography and Security
[Submitted on 24 Sep 2023 (v1), last revised 7 May 2024 (this version, v2)]
Title:Seeing Is Not Always Believing: Invisible Collision Attack and Defence on Pre-Trained Models
View PDF HTML (experimental)Abstract:Large-scale pre-trained models (PTMs) such as BERT and GPT have achieved great success in diverse fields. The typical paradigm is to pre-train a big deep learning model on large-scale data sets, and then fine-tune the model on small task-specific data sets for downstream tasks. Although PTMs have rapidly progressed with wide real-world applications, they also pose significant risks of potential attacks. Existing backdoor attacks or data poisoning methods often build up the assumption that the attacker invades the computers of victims or accesses the target data, which is challenging in real-world scenarios. In this paper, we propose a novel framework for an invisible attack on PTMs with enhanced MD5 collision. The key idea is to generate two equal-size models with the same MD5 checksum by leveraging the MD5 chosen-prefix collision. Afterwards, the two ``same" models will be deployed on public websites to induce victims to download the poisoned model. Unlike conventional attacks on deep learning models, this new attack is flexible, covert, and model-independent. Additionally, we propose a simple defensive strategy for recognizing the MD5 chosen-prefix collision and provide a theoretical justification for its feasibility. We extensively validate the effectiveness and stealthiness of our proposed attack and defensive method on different models and data sets.
Submission history
From: Minghang Deng [view email][v1] Sun, 24 Sep 2023 08:34:35 UTC (590 KB)
[v2] Tue, 7 May 2024 16:27:05 UTC (590 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.