Computer Science > Computation and Language
[Submitted on 18 Sep 2023]
Title:Machine Learning Technique Based Fake News Detection
View PDFAbstract:False news has received attention from both the general public and the scholarly world. Such false information has the ability to affect public perception, giving nefarious groups the chance to influence the results of public events like elections. Anyone can share fake news or facts about anyone or anything for their personal gain or to cause someone trouble. Also, information varies depending on the part of the world it is shared on. Thus, in this paper, we have trained a model to classify fake and true news by utilizing the 1876 news data from our collected dataset. We have preprocessed the data to get clean and filtered texts by following the Natural Language Processing approaches. Our research conducts 3 popular Machine Learning (Stochastic gradient descent, Naïve Bayes, Logistic Regression,) and 2 Deep Learning (Long-Short Term Memory, ASGD Weight-Dropped LSTM, or AWD-LSTM) algorithms. After we have found our best Naive Bayes classifier with 56% accuracy and an F1-macro score of an average of 32%.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.