Computer Science > Robotics
[Submitted on 22 Sep 2023]
Title:Robotic Handling of Compliant Food Objects by Robust Learning from Demonstration
View PDFAbstract:The robotic handling of compliant and deformable food raw materials, characterized by high biological variation, complex geometrical 3D shapes, and mechanical structures and texture, is currently in huge demand in the ocean space, agricultural, and food industries. Many tasks in these industries are performed manually by human operators who, due to the laborious and tedious nature of their tasks, exhibit high variability in execution, with variable outcomes. The introduction of robotic automation for most complex processing tasks has been challenging due to current robot learning policies. A more consistent learning policy involving skilled operators is desired. In this paper, we address the problem of robot learning when presented with inconsistent demonstrations. To this end, we propose a robust learning policy based on Learning from Demonstration (LfD) for robotic grasping of food compliant objects. The approach uses a merging of RGB-D images and tactile data in order to estimate the necessary pose of the gripper, gripper finger configuration and forces exerted on the object in order to achieve effective robot handling. During LfD training, the gripper pose, finger configurations and tactile values for the fingers, as well as RGB-D images are saved. We present an LfD learning policy that automatically removes inconsistent demonstrations, and estimates the teacher's intended policy. The performance of our approach is validated and demonstrated for fragile and compliant food objects with complex 3D shapes. The proposed approach has a vast range of potential applications in the aforementioned industry sectors.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.