Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 14 Sep 2023 (v1), last revised 14 Sep 2024 (this version, v2)]
Title:Hybrid Attention-based Encoder-decoder Model for Efficient Language Model Adaptation
View PDF HTML (experimental)Abstract:The attention-based encoder-decoder (AED) speech recognition model has been widely successful in recent years. However, the joint optimization of acoustic model and language model in end-to-end manner has created challenges for text adaptation. In particular, effective, quick and inexpensive adaptation with text input has become a primary concern for deploying AED systems in the industry. To address this issue, we propose a novel model, the hybrid attention-based encoder-decoder (HAED) speech recognition model that preserves the modularity of conventional hybrid automatic speech recognition systems. Our HAED model separates the acoustic and language models, allowing for the use of conventional text-based language model adaptation techniques. We demonstrate that the proposed HAED model yields 23% relative Word Error Rate (WER) improvements when out-of-domain text data is used for language model adaptation, with only a minor degradation in WER on a general test set compared with the conventional AED model.
Submission history
From: Shaoshi Ling [view email][v1] Thu, 14 Sep 2023 01:07:36 UTC (208 KB)
[v2] Sat, 14 Sep 2024 22:31:37 UTC (99 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.