Computer Science > Machine Learning
[Submitted on 5 Sep 2023]
Title:Model-based Offline Policy Optimization with Adversarial Network
View PDFAbstract:Model-based offline reinforcement learning (RL), which builds a supervised transition model with logging dataset to avoid costly interactions with the online environment, has been a promising approach for offline policy optimization. As the discrepancy between the logging data and online environment may result in a distributional shift problem, many prior works have studied how to build robust transition models conservatively and estimate the model uncertainty accurately. However, the over-conservatism can limit the exploration of the agent, and the uncertainty estimates may be unreliable. In this work, we propose a novel Model-based Offline policy optimization framework with Adversarial Network (MOAN). The key idea is to use adversarial learning to build a transition model with better generalization, where an adversary is introduced to distinguish between in-distribution and out-of-distribution samples. Moreover, the adversary can naturally provide a quantification of the model's uncertainty with theoretical guarantees. Extensive experiments showed that our approach outperforms existing state-of-the-art baselines on widely studied offline RL benchmarks. It can also generate diverse in-distribution samples, and quantify the uncertainty more accurately.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.