Computer Science > Human-Computer Interaction
[Submitted on 5 Sep 2023]
Title:Investigating the Impact of a Dual Musical Brain-Computer Interface on Interpersonal Synchrony: A Pilot Study
View PDFAbstract:This study looked into how effective a Musical Brain-Computer Interface (MBCI) can be in providing feedback about synchrony between two people. Using a double EEG setup, we compared two types of musical feedback; one that adapted in real-time based on the inter-brain synchrony between participants (Neuroadaptive condition), and another music that was randomly generated (Random condition). We evaluated how these two conditions were perceived by 8 dyads (n = 16) and whether the generated music could influence the perceived connection and EEG synchrony between them. The findings indicated that Neuroadaptive musical feedback could potentially boost synchrony levels between people compared to Random feedback, as seen by a significant increase in EEG phase-locking values. Additionally, the real-time measurement of synchrony was successfully validated and musical neurofeedback was generally well-received by the participants. However, more research is needed for conclusive results due to the small sample size. This study is a stepping stone towards creating music that can audibly reflect the level of synchrony between individuals.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.