Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Sep 2023 (v1), last revised 27 Aug 2024 (this version, v2)]
Title:Variational Bayesian Imaging with an Efficient Surrogate Score-based Prior
View PDF HTML (experimental)Abstract:We propose a surrogate function for efficient yet principled use of score-based priors in Bayesian imaging. We consider ill-posed inverse imaging problems in which one aims for a clean image posterior given incomplete or noisy measurements. Since the measurements do not uniquely determine a true image, a prior is needed to constrain the solution space. Recent work turned score-based diffusion models into principled priors for solving ill-posed imaging problems by appealing to an ODE-based log-probability function. However, evaluating the ODE is computationally inefficient and inhibits posterior estimation of high-dimensional images. Our proposed surrogate prior is based on the evidence lower bound of a score-based diffusion model. We demonstrate the surrogate prior on variational inference for efficient approximate posterior sampling of large images. Compared to the exact prior in previous work, our surrogate accelerates optimization of the variational image distribution by at least two orders of magnitude. We also find that our principled approach gives more accurate posterior estimation than non-variational diffusion-based approaches that involve hyperparameter-tuning at inference. Our work establishes a practical path forward for using score-based diffusion models as general-purpose image priors.
Submission history
From: Berthy Feng [view email][v1] Tue, 5 Sep 2023 04:55:10 UTC (3,644 KB)
[v2] Tue, 27 Aug 2024 21:05:09 UTC (4,115 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.