Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Sep 2023]
Title:ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic Diffusion Models
View PDFAbstract:Colonoscopy analysis, particularly automatic polyp segmentation and detection, is essential for assisting clinical diagnosis and treatment. However, as medical image annotation is labour- and resource-intensive, the scarcity of annotated data limits the effectiveness and generalization of existing methods. Although recent research has focused on data generation and augmentation to address this issue, the quality of the generated data remains a challenge, which limits the contribution to the performance of subsequent tasks. Inspired by the superiority of diffusion models in fitting data distributions and generating high-quality data, in this paper, we propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks. Specifically, ArSDM utilizes the ground-truth segmentation mask as a prior condition during training and adjusts the diffusion loss for each input according to the polyp/background size ratio. Furthermore, ArSDM incorporates a pre-trained segmentation model to refine the training process by reducing the difference between the ground-truth mask and the prediction mask. Extensive experiments on segmentation and detection tasks demonstrate the generated data by ArSDM could significantly boost the performance of baseline methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.