Computer Science > Human-Computer Interaction
[Submitted on 31 Aug 2023]
Title:Science Communications for Explainable Artificial Intelligence
View PDFAbstract:Artificial Intelligence (AI) has a communication problem. XAI methods have been used to make AI more understandable and helped resolve some of the transparency issues that inhibit AI's broader usability. However, user evaluation studies reveal that the often numerical explanations provided by XAI methods have not always been effective for many types of users of AI systems. This article aims to adapt the major communications models from Science Communications into a framework for practitioners to understand, influence, and integrate the context of audiences both for their communications supporting AI literacy in the public and in designing XAI systems that are more adaptive to different users.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.