Computer Science > Social and Information Networks
[Submitted on 29 Aug 2023]
Title:A Hybrid Membership Latent Distance Model for Unsigned and Signed Integer Weighted Networks
View PDFAbstract:Graph representation learning (GRL) has become a prominent tool for furthering the understanding of complex networks providing tools for network embedding, link prediction, and node classification. In this paper, we propose the Hybrid Membership-Latent Distance Model (HM-LDM) by exploring how a Latent Distance Model (LDM) can be constrained to a latent simplex. By controlling the edge lengths of the corners of the simplex, the volume of the latent space can be systematically controlled. Thereby communities are revealed as the space becomes more constrained, with hard memberships being recovered as the simplex volume goes to zero. We further explore a recent likelihood formulation for signed networks utilizing the Skellam distribution to account for signed weighted networks and extend the HM-LDM to the signed Hybrid Membership-Latent Distance Model (sHM-LDM). Importantly, the induced likelihood function explicitly attracts nodes with positive links and deters nodes from having negative interactions. We demonstrate the utility of HM-LDM and sHM-LDM on several real networks. We find that the procedures successfully identify prominent distinct structures, as well as how nodes relate to the extracted aspects providing favorable performances in terms of link prediction when compared to prominent baselines. Furthermore, the learned soft memberships enable easily interpretable network visualizations highlighting distinct patterns.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.