Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 24 Aug 2023 (v1), last revised 26 May 2024 (this version, v3)]
Title:IPA: Inference Pipeline Adaptation to Achieve High Accuracy and Cost-Efficiency
View PDF HTML (experimental)Abstract:Efficiently optimizing multi-model inference pipelines for fast, accurate, and cost-effective inference is a crucial challenge in machine learning production systems, given their tight end-to-end latency requirements. To simplify the exploration of the vast and intricate trade-off space of latency, accuracy, and cost in inference pipelines, providers frequently opt to consider one of them. However, the challenge lies in reconciling latency, accuracy, and cost trade-offs. To address this challenge and propose a solution to efficiently manage model variants in inference pipelines, we present IPA, an online deep learning Inference Pipeline Adaptation system that efficiently leverages model variants for each deep learning task. Model variants are different versions of pre-trained models for the same deep learning task with variations in resource requirements, latency, and accuracy. IPA dynamically configures batch size, replication, and model variants to optimize accuracy, minimize costs, and meet user-defined latency Service Level Agreements (SLAs) using Integer Programming. It supports multi-objective settings for achieving different trade-offs between accuracy and cost objectives while remaining adaptable to varying workloads and dynamic traffic patterns. Navigating a wider variety of configurations allows \namex{} to achieve better trade-offs between cost and accuracy objectives compared to existing methods. Extensive experiments in a Kubernetes implementation with five real-world inference pipelines demonstrate that IPA improves end-to-end accuracy by up to 21% with a minimal cost increase. The code and data for replications are available at this https URL.
Submission history
From: Saeid Ghafouri [view email][v1] Thu, 24 Aug 2023 15:48:21 UTC (6,601 KB)
[v2] Thu, 18 Jan 2024 21:20:08 UTC (4,288 KB)
[v3] Sun, 26 May 2024 12:03:03 UTC (4,288 KB)
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.