Computer Science > Artificial Intelligence
[Submitted on 16 Aug 2023]
Title:AI For Fraud Awareness
View PDFAbstract:In today's world, with the rise of numerous social platforms, it has become relatively easy for anyone to spread false information and lure people into traps. Fraudulent schemes and traps are growing rapidly in the investment world. Due to this, countries and individuals face huge financial risks. We present an awareness system with the use of machine learning and gamification techniques to educate the people about investment scams and traps. Our system applies machine learning techniques to provide a personalized learning experience to the user. The system chooses distinct game-design elements and scams from the knowledge pool crafted by domain experts for each individual. The objective of the research project is to reduce inequalities in all countries by educating investors via Active Learning. Our goal is to assist the regulators in assuring a conducive environment for a fair, efficient, and inclusive capital market. In the paper, we discuss the impact of the problem, provide implementation details, and showcase the potentiality of the system through preliminary experiments and results.
Submission history
From: Prabh Simran Baweja [view email][v1] Wed, 16 Aug 2023 05:45:34 UTC (3,606 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.