Mathematics > Numerical Analysis
[Submitted on 21 Aug 2023]
Title:Optimal error estimates for non-conforming approximations of linear parabolic problems with minimal regularity
View PDFAbstract:We consider a general linear parabolic problem with extended time boundary conditions (including initial value problems and periodic ones), and approximate it by the implicit Euler scheme in time and the Gradient Discretisation method in space; the latter is in fact a class of methods that includes conforming and nonconforming finite elements, discontinuous Galerkin methods and several others. The main result is an error estimate which holds without supplementary regularity hypothesis on the solution. This result states that the approximation error has the same order as the sum of the interpolation error and the conformity error. The proof of this result relies on an inf-sup inequality in Hilbert spaces which can be used both in the continuous and the discrete frameworks. The error estimate result is illustrated by numerical examples with low regularity of the solution.
Submission history
From: Robert Eymard [view email] [via CCSD proxy][v1] Mon, 21 Aug 2023 13:18:09 UTC (121 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.