Computer Science > Machine Learning
[Submitted on 18 Aug 2023]
Title:Intrinsically Motivated Hierarchical Policy Learning in Multi-objective Markov Decision Processes
View PDFAbstract:Multi-objective Markov decision processes are sequential decision-making problems that involve multiple conflicting reward functions that cannot be optimized simultaneously without a compromise. This type of problems cannot be solved by a single optimal policy as in the conventional case. Alternatively, multi-objective reinforcement learning methods evolve a coverage set of optimal policies that can satisfy all possible preferences in solving the problem. However, many of these methods cannot generalize their coverage sets to work in non-stationary environments. In these environments, the parameters of the state transition and reward distribution vary over time. This limitation results in significant performance degradation for the evolved policy sets. In order to overcome this limitation, there is a need to learn a generic skill set that can bootstrap the evolution of the policy coverage set for each shift in the environment dynamics therefore, it can facilitate a continuous learning process. In this work, intrinsically motivated reinforcement learning has been successfully deployed to evolve generic skill sets for learning hierarchical policies to solve multi-objective Markov decision processes. We propose a novel dual-phase intrinsically motivated reinforcement learning method to address this limitation. In the first phase, a generic set of skills is learned. While in the second phase, this set is used to bootstrap policy coverage sets for each shift in the environment dynamics. We show experimentally that the proposed method significantly outperforms state-of-the-art multi-objective reinforcement methods in a dynamic robotics environment.
Submission history
From: Sherif Abdelfattah [view email][v1] Fri, 18 Aug 2023 02:10:45 UTC (7,081 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.