Computer Science > Computation and Language
[Submitted on 17 Aug 2023]
Title:Don't lose the message while paraphrasing: A study on content preserving style transfer
View PDFAbstract:Text style transfer techniques are gaining popularity in natural language processing allowing paraphrasing text in the required form: from toxic to neural, from formal to informal, from old to the modern English language, etc. Solving the task is not sufficient to generate some neural/informal/modern text, but it is important to preserve the original content unchanged. This requirement becomes even more critical in some applications such as style transfer of goal-oriented dialogues where the factual information shall be kept to preserve the original message, e.g. ordering a certain type of pizza to a certain address at a certain time. The aspect of content preservation is critical for real-world applications of style transfer studies, but it has received little attention. To bridge this gap we perform a comparison of various style transfer models on the example of the formality transfer domain. To perform a study of the content preservation abilities of various style transfer methods we create a parallel dataset of formal vs. informal task-oriented dialogues. The key difference between our dataset and the existing ones like GYAFC [17] is the presence of goal-oriented dialogues with predefined semantic slots essential to be kept during paraphrasing, e.g. named entities. This additional annotation allowed us to conduct a precise comparative study of several state-of-the-art techniques for style transfer. Another result of our study is a modification of the unsupervised method LEWIS [19] which yields a substantial improvement over the original method and all evaluated baselines on the proposed task.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.