Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 15 Aug 2023]
Title:PoFEL: Energy-efficient Consensus for Blockchain-based Hierarchical Federated Learning
View PDFAbstract:Facilitated by mobile edge computing, client-edge-cloud hierarchical federated learning (HFL) enables communication-efficient model training in a widespread area but also incurs additional security and privacy challenges from intermediate model aggregations and remains the single point of failure issue. To tackle these challenges, we propose a blockchain-based HFL (BHFL) system that operates a permissioned blockchain among edge servers for model aggregation without the need for a centralized cloud server. The employment of blockchain, however, introduces additional overhead. To enable a compact and efficient workflow, we design a novel lightweight consensus algorithm, named Proof of Federated Edge Learning (PoFEL), to recycle the energy consumed for local model training. Specifically, the leader node is selected by evaluating the intermediate FEL models from all edge servers instead of other energy-wasting but meaningless calculations. This design thus improves the system efficiency compared with traditional BHFL frameworks. To prevent model plagiarism and bribery voting during the consensus process, we propose Hash-based Commitment and Digital Signature (HCDS) and Bayesian Truth Serum-based Voting (BTSV) schemes. Finally, we devise an incentive mechanism to motivate continuous contributions from clients to the learning task. Experimental results demonstrate that our proposed BHFL system with the corresponding consensus protocol and incentive mechanism achieves effectiveness, low computational cost, and fairness.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.