Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 9 Aug 2023 (v1), last revised 3 Dec 2023 (this version, v3)]
Title:Optimal Flexible Consensus and its Application to Ethereum
View PDFAbstract:Classic BFT consensus protocols guarantee safety and liveness for all clients if fewer than one-third of replicas are faulty. However, in applications such as high-value payments, some clients may want to prioritize safety over liveness. Flexible consensus allows each client to opt for a higher safety resilience, albeit at the expense of reduced liveness resilience. We present the first construction that allows optimal safety--liveness tradeoff for every client simultaneously. This construction is modular and is realized as an add-on applied on top of an existing consensus protocol. The add-on consists of an additional round of voting and permanent locking done by the replicas, to sidestep a sub-optimal quorum-intersection-based constraint present in previous solutions. We adapt our construction to the existing Ethereum protocol to derive optimal flexible confirmation rules that clients can adopt unilaterally without requiring system-wide changes. This is possible because existing Ethereum protocol features can double as the extra voting and locking. We demonstrate an implementation using Ethereum's consensus API.
Submission history
From: Srivatsan Sridhar [view email][v1] Wed, 9 Aug 2023 17:46:01 UTC (19,443 KB)
[v2] Thu, 10 Aug 2023 02:28:14 UTC (19,443 KB)
[v3] Sun, 3 Dec 2023 21:34:34 UTC (19,447 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.