Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 7 Aug 2023 (v1), last revised 11 Aug 2023 (this version, v2)]
Title:Quantifying the Performance Benefits of Partitioned Communication in MPI
View PDFAbstract:Partitioned communication was introduced in MPI 4.0 as a user-friendly interface to support pipelined communication patterns, particularly common in the context of MPI+threads. It provides the user with the ability to divide a global buffer into smaller independent chunks, called partitions, which can then be communicated independently. In this work we first model the performance gain that can be expected when using partitioned communication. Next, we describe the improvements we made to \mpich{} to enable those gains and provide a high-quality implementation of MPI partitioned communication. We then evaluate partitioned communication in various common use cases and assess the performance in comparison with other MPI point-to-point and one-sided approaches. Specifically, we first investigate two scenarios commonly encountered for small partition sizes in a multithreaded environment: thread contention and overhead of using many partitions. We propose two solutions to alleviate the measured penalty and demonstrate their use. We then focus on large messages and the gain obtained when exploiting the delay resulting from computations or load imbalance. We conclude with our perspectives on the benefits of partitioned communication and the various results obtained.
Submission history
From: Thomas Gillis [view email][v1] Mon, 7 Aug 2023 22:15:55 UTC (308 KB)
[v2] Fri, 11 Aug 2023 20:19:11 UTC (308 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.