Computer Science > Machine Learning
[Submitted on 7 Aug 2023]
Title:Solving Falkner-Skan type equations via Legendre and Chebyshev Neural Blocks
View PDFAbstract:In this paper, a new deep-learning architecture for solving the non-linear Falkner-Skan equation is proposed. Using Legendre and Chebyshev neural blocks, this approach shows how orthogonal polynomials can be used in neural networks to increase the approximation capability of artificial neural networks. In addition, utilizing the mathematical properties of these functions, we overcome the computational complexity of the backpropagation algorithm by using the operational matrices of the derivative. The efficiency of the proposed method is carried out by simulating various configurations of the Falkner-Skan equation.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.