Computer Science > Cryptography and Security
[Submitted on 3 Aug 2023]
Title:Towards Fair and Privacy Preserving Federated Learning for the Healthcare Domain
View PDFAbstract:Federated learning enables data sharing in healthcare contexts where it might otherwise be difficult due to data-use-ordinances or security and communication constraints. Distributed and shared data models allow models to become generalizable and learn from heterogeneous clients. While addressing data security, privacy, and vulnerability considerations, data itself is not shared across nodes in a given learning network. On the other hand, FL models often struggle with variable client data distributions and operate on an assumption of independent and identically distributed data. As the field has grown, the notion of fairness-aware federated learning mechanisms has also been introduced and is of distinct significance to the healthcare domain where many sensitive groups and protected classes exist. In this paper, we create a benchmark methodology for FAFL mechanisms under various heterogeneous conditions on datasets in the healthcare domain typically outside the scope of current federated learning benchmarks, such as medical imaging and waveform data formats. Our results indicate considerable variation in how various FAFL schemes respond to high levels of data heterogeneity. Additionally, doing so under privacy-preserving conditions can create significant increases in network communication cost and latency compared to the typical federated learning scheme.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.