Computer Science > Computational Engineering, Finance, and Science
[Submitted on 2 Aug 2023]
Title:A data-driven microscopic on-ramp model based on macroscopic network flows
View PDFAbstract:While macroscopic traffic flow models consider traffic as a fluid, microscopic traffic flow models describe the dynamics of individual vehicles. Capturing macroscopic traffic phenomena remains a challenge for microscopic models, especially in complex road sections such as on-ramps. In this paper, we propose a microscopic model for on-ramps derived from a macroscopic network flow model calibrated to real traffic data. The microscopic flow-based model requires additional assumptions regarding the acceleration and the merging behavior on the on-ramp to maintain consistency with the mean speeds, traffic flow and density predicted by the macroscopic model. To evaluate the model's performance, we conduct traffic simulations assessing speeds, accelerations, lane change positions, and risky behavior. Our results show that, although the proposed model may not fully capture all traffic phenomena of on-ramps accurately, it performs better than the Intelligent Driver Model (IDM) in most evaluated aspects. While the IDM is almost completely free of conflicts, the proposed model evokes a realistic amount and severity of conflicts and can therefore be used for safety analysis.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.