Computer Science > Machine Learning
[Submitted on 1 Aug 2023]
Title:Explainable Graph Spectral Clustering of Text Documents
View PDFAbstract:Spectral clustering methods are known for their ability to represent clusters of diverse shapes, densities etc. However, results of such algorithms, when applied e.g. to text documents, are hard to explain to the user, especially due to embedding in the spectral space which has no obvious relation to document contents. Therefore there is an urgent need to elaborate methods for explaining the outcome of the clustering. This paper presents a contribution towards this goal. We present a proposal of explanation of results of combinatorial Laplacian based graph spectral clustering. It is based on showing (approximate) equivalence of combinatorial Laplacian embedding, $K$-embedding (proposed in this paper) and term vector space embedding. Hence a bridge is constructed between the textual contents and the clustering results. We provide theoretical background for this approach. We performed experimental study showing that $K$-embedding approximates well Laplacian embedding under favourable block matrix conditions and show that approximation is good enough under other conditions.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.