Computer Science > Machine Learning
[Submitted on 31 Jul 2023]
Title:LaplaceConfidence: a Graph-based Approach for Learning with Noisy Labels
View PDFAbstract:In real-world applications, perfect labels are rarely available, making it challenging to develop robust machine learning algorithms that can handle noisy labels. Recent methods have focused on filtering noise based on the discrepancy between model predictions and given noisy labels, assuming that samples with small classification losses are clean. This work takes a different approach by leveraging the consistency between the learned model and the entire noisy dataset using the rich representational and topological information in the data. We introduce LaplaceConfidence, a method that to obtain label confidence (i.e., clean probabilities) utilizing the Laplacian energy. Specifically, it first constructs graphs based on the feature representations of all noisy samples and minimizes the Laplacian energy to produce a low-energy graph. Clean labels should fit well into the low-energy graph while noisy ones should not, allowing our method to determine data's clean probabilities. Furthermore, LaplaceConfidence is embedded into a holistic method for robust training, where co-training technique generates unbiased label confidence and label refurbishment technique better utilizes it. We also explore the dimensionality reduction technique to accommodate our method on large-scale noisy datasets. Our experiments demonstrate that LaplaceConfidence outperforms state-of-the-art methods on benchmark datasets under both synthetic and real-world noise.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.